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ABSTRACT.  This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at 
it’s free end.  In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for 
a beam with a fully embedded horizontal sharp crack.  The beam aspect ratio, crack length and crack center location appear 
as general model parameters.  Rotary springs are introduced at the crack tip cross sections as needed to account for the 
changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip 
transition zones.  
 
Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key 
observations, (a) the free surface and neutral axis curvatures of the cracked beam at the crack center location match the 
curvature of a healthy beam (an identical beam without a crack under the same loading conditions), (b) the neutral axis 
rotations (slope) of the cracked beam in the region between the applied load and the nearest crack tip matches the 
corresponding slope of the healthy beam.  The above observations led to the development of close form solutions for the 
resultant forces (axial and shear) and moment acting in the beams above and below the crack.  Axial force and bending 
moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths 
considered. Shear force estimates dominating the beams above and below the crack as well as transition zone length 
estimates are also obtained.  The model developed in this study is then used along with 2D finite elements in conducting 
parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under 
consideration.  The latter studies are reported in the companion paper Part B-Results and Discussion. 
	  
Introduction.  Over the last two decades, the frequency response [1-5] of a component or a structure 
has been used to assess “structural health” as one of several methods used in damage detection [6-14] 
and structural health monitoring.  In most such studies, the effects of damage on the structural 
frequency response has been explored using a cantilever beam geometry.  With the above in mind, 
diffused damage detection studies have been developed [7-15] using optimization algorithms that 
minimize an “error estimate”.  Typically, the employed “error estimates” are calculated by comparing 
the experimentally measured frequencies of the structure [8] to the respective frequencies predicted by 
a physics based model that solves a problem of the same structural geometry but with reduced localized 
properties at a prescribed location [9].  Often, the optimization algorithms identify the model structure 
that best matches the experimental results, thus identifying the likely location and degree of structural 
damage manifested through the EI, structural stiffness reduction.   For example, Xu et al. [8] developed 
a damage detection algorithm that monitors the changes in the first 10 transverse frequencies of a 
vibrating beam as a means of detecting the location and degree of damage along the axis of the beam as 
measured through a reduced localized structural stiffness.  The promising outcomes of their initial 
studies have been validated through model experiments and have sparked new interest in expanding the 
studies to include detection of diffused damage in more complicated structures such a frames and 
bolted joints [11-15].   
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While the above efforts address damage assumed to be diffused over a prescribed region, in recent 
years a few studies have attempted to address the effects of sharp cracks on the modal response of a 
structure [16-27], a few of which employ basic fracture mechanics concepts [22-27].  Such studies 
require prior knowledge of the fracture mechanics stress fields and related stress intensity factors.  The 
near-tip fracture quantities are thought to be required in assessing the energy changes due to the 
introduction of a crack and the related changes in the structural compliance or associated stiffness 
changes induced by the presence of a sharp crack. As a result, fracture mechanics based studies have 
been limited to systems with edge cracks for which the stress intensity factors [28-32] dominating the 
crack tip region is known.  Furthermore, most such studies also assume the presence of a mode I 
“breathing” crack thus preserving the linearity of the system that would otherwise be violated due to 
non-linear crack surface contact effects.  More recently, Jing et al. [27] employed a variation of the 
model presented in this work in obtaining the natural frequencies of a cantilever beam containing a 
horizontal crack capable of relative crack surface sliding but not opening. 

 

 

 
 

Fig. 1.  Normalized top surface beam curvatures 
for a healthy and a cracked beams generated using 
2D finite elements.  

Fig. 2.  Normalized (a) deflections, (b) slope and 
(c) curvature differences between a cracked and a 
“healthy” beam subjected to an end loading P .   

 
Recent, Two-Dimensional (2D) Finite Element (FE) studies [33-35] on the cantilever specimen shown 
in Figs 1-4, suggest that predominately mode II conditions dominate both crack tip regions for a fully 
embedded horizontal sharp crack subjected to the loading conditions shown in Fig. 1b.  As such, and 
under ideally flat crack surface condition, surface contact should minimally affect the overall load 
transfer and deformation mechanics of the specimen shown in Fig. 3.  Furthermore, finite element 
findings reported in [33, 34] (see Figs. 1-3) led to the following two key observations; (a) the free 
surface and neutral axis curvatures of the cracked beam at the crack center location match the 
curvature of a healthy beam, i.e., an identical beam without a crack under an end force condition, and 
(b) the neutral axis rotations (slope) of the cracked beam in the region between the applied load and 
the nearest crack tip matches the corresponding slope of the healthy beam.   
 
Guided by the above finite element findings, in this study a four-beam model [33] is developed in an 
effort to establish simple but effective physics based models capable of predicting the load transfer and 
deformation mechanics as well as the near tip fracture conditions, the frequency and modal response of 
structures with fully embedded cracks of the type shown in Fig. 4.  The development of the four-beam 
model shall be presented next. 
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Fig. 3. Normalized curvature differences between a 
cracked and a healthy beam extracted for the top beam 
surface using 2D finite element models.   In this 
simulation for the cracked beam, a horizontal sharp crack 
of normalized length 2a = 0.15L was placed at the 
center of the beam as shown in (a) above.  The beam 
aspect ratio used was h L = 0.2 .  The results support 
the existence of transition zones of equal length at 
the left and right crack tips. 

Fig. 4.  Schematics highlighting the four beam 
model development. Rotary springs are introduced 
at the interfaces between beams 1 and 2, 2 and 4, 1 
and 3, and 3 and 4. (a)  A schematic showing the 
geometry and boundary conditions applied on the 
cracked beam.  (b) The identification of the four 
beams.  (c)  The four beams connected through 
rotary springs at their interfaces. 

 
Development of the four-beam model.  The results presented in Figs. 1-3 were obtained as part of a 
broad finite element study aimed at establishing the deformation and fracture mechanics of a cantilever 
beam containing a fully embedded sharp crack positioned at any admissible location and orientation 
within the beam domain.  The results of those studies are reported in greater detail elsewhere [33].  In 
Fig. 1, the curves shown represent the curvatures of a healthy and a cracked beam extracted from 
respective finite element models at the top beam surfaces.   As indicated in Fig. 1, the results 
correspond to a beam of aspect ratio L / h = 5 , with the cracked beam containing a horizontal through 
thickness sharp crack of length l = 0.075L  located at the center of the beam at x

C
= 0.5L.   The 

curvature results for the healthy beam i.e., a beam without a crack but otherwise geometrically identical 
to the one with the crack, are represented by the rectangular open symbols.  As expected, away from 
the ends, the healthy beam curvatures form a linear profile with position x  consistent with the bending 
theory prediction of , where y(x)  represents the deflection of the beam neutral 
axis, M (x) is the bending moment at location x , E  is the elastic modulus and I  is the second moment 
of inertia with respect to the bending axis.  On the other hand, the top surface curvatures predicted for 
the cracked beam are shown using the solid blue symbols.  As shown in Fig. 1, the curvature results for 
the cracked beam deviate from those of the healthy beam only in the crack region exhibiting a 
sinusoidal-like profile over a distance A  that appears to be approximately two to three times the crack 

d
2
y / dx

2
= M (x) / EI
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length size.  Most importantly for this study, one observes that the curvature of the cracked beam 
intersects the healthy beam curvature profile at the center of the crack Consistent with Figs 1-3.  This 
observation has been validated through broad parametric studies reported in [33].  In fact, the 
observation has been found to hold true for curvature estimates for the top and bottom beam surfaces as 
well as for the mid-planes above and below the crack in the crack region.  Informed by the above 
observations, the following hypothesis used in constructing the proposed four-beam model is put 
forward. 
 
Proposed deformation hypothesis. For any cantilever beam system containing a horizontal sharp 
crack and subjected to an end transverse loading, the curvatures of the mid-planes above and below 
the crack match the curvature of the healthy beam at the crack center location. 
 
Guided by the above observation, let’s consider the cracked cantilever beam shown in Fig. 4a.  The 
beam has a length L , height h  while containing a horizontal sharp crack of length l = 2a  located at 
position x

C
from the fixed end at depth h

1
from the top surface.  In this study, the above domain is 

divided into four sub-domains, each forming a beam as shown in Fig. 4b labeled Beam-1, Beam-2, 
Beam-3 and Beam-4.  As will be discussed later on in this work and as suggested by finite element 
studies reported in [33] and in Figs 1-3, a transition region exists between Beam-1 and Beams 2 and 3 
at the left crack tip and the same Beams 2 and 3 and Beam-4 at the right crack tip.  While the effects of 
the transition regions will be incorporated into the four-beam model, at present we shall focus on the 
mechanics of Beams 2 and 3 since their response appears to be directly linked to the deformation 
hypothesis stated above.  More specifically, let’s consider the beam free body diagrams shown in Fig. 5.   

 
 
Fig. 5.  Schematics used in the development of the analytical model capturing the mechanics of the 
beams above and below the crack, i.e., beams 2 and 3 shown in Fig. 4.  (a) The crack beam with beams 
2 and 3 highlighted along with interfaces 1-4.  (b) A section through the center of the crack exposing 
the force and moment resultants acting in the “top” and “bottom” beams.  (c) Free body diagrams of the 
left and right half of the “top” and “bottom” beams, exposing the resultants acting at their 
corresponding interfaces 1-4. 
 
As shown, at the crack center cross sections, Beam-2, i.e., the beam above the crack plane, is subjected 
to an axial force resultant , shear force resultant  and bending moment resultant .  Similarly, 
Beam-3 also referred to in this study as the bottom beam denoted by a subscript , is subjected to force 
and moment resultants , and respectively.  Meanwhile, cross section/interface 1 which is the 
left end of the top beam is subjected to the force and moment resultants ,  and whereas the 

N
t

V
t

M
t

b

N
b
V
b

M
b

N
1
V
1

M
1



Mechanics, Materials Science & Engineering, Submitted, June 2016 – ISSN 2412-5954 
	  

	   5	  

right end of the same beam is subjected to , and at Interface 2.  Similarly, the bottom beam 
or Beam-3 is subjected to end forces and moments at section/interface 3 and 

at section 4 as shown in Fig. 5c. 
 
Based on the proposed deformation hypothesis, the curvature of Beams 2 and 3 at the center of the 
crack should be equal to the curvature of the healthy beam, i.e., 

   (1) 

where is the mid-plane deflection of Beam 2, is the mid-plane deflection of Beam 3 and 
is the mid-plane deflection of the healthy beam.  Consistent with beam theory [36-37], it can be 

shown that the above differential equations can be expressed in terms of the bending moments acting in 
each beam at the cross section of interest and the bending stiffness  for each beam, i.e., 

     (2) 

where the subscripts denote quantities for the top (Beam 2) and bottom (Beam 3) beams 
respectively.  The above simple equations for the moment resultants at the center of the crack are 
general, in that, they yield the moment resultants in the top and bottom beams at the center of the crack 
as a function of the bending moment experienced by the healthy beam at the same location, i.e., 

    (3)   

where for a downward load P  the bending moment at the crack center location in the healthy beam is 
.  With the bending moments acting in the top and bottom beams know, an expression 

for the axial forces is then obtained through a global moment equilibrium enforced over the 
right half of the beam (see Fig. 5b), such that, 

   (4) 

Force equilibrium in the direction for either half of the beam shown in Fig. 5b results in the obvious 
outcome that the axial force in the bottom beam should be equal and opposite to its counterpart acting 
in the top beam, i.e.,  .  The latter finding along with equations (3) and (4) yield a general 
expression for the axial forces  as follows, 

𝑁! = −𝑁! =
!!!
!
{1− !!!!!

!
}     (5) 

where are the second moments of inertia with respect to the bending axis of the healthy 
beam, top beam or Beam-2 and bottom beam or Beam-3 respectively, is the beam height and  as 
before is the bending moment acting at the crack center location in the healthy beam.  Further 
enforcing force equilibrium in the y direction for either half of the beam shown in Fig. 5 yields, 

V
t
+V

b
= P.       (6) 

Now, by enforcing force and moment equilibrium within the top and bottom beams shown in Figs 5c 
and 6a, one can easily establish the following relations between the cross sectional resultants acting at 
beam interfaces 1, 2, 3 and 4 shown in Fig. 5c, 

N1 = Nt                      N2 = Nt                   N3 = Nb                         N4 = Nb               
V1 =Vt                       V2 =Vt                    V3 =Vb                          V4 =Vb
M1 = Mt −Vta           M 2 = Mt +Vta        M 3 = Mb −Vba             M 4 = Mb +Vba

  (7) 
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The above analysis suggests that in the presence of a horizontal crack, load transfer across the cracked 
cross section is enabled by the development of a force couple subjecting the beams above and below 
the crack into compression and tension respectively for an upwardly applied load P.   Meanwhile, the 
same beams experience a linearly varying bending moment between interfaces 1 and 2 for the upper 
beam and 3 and 4 for the lower beam.  In the same interval, and over the length of each beam which is 
equal to the length of the horizontal crack, both the axial and shear resultant forces N(x) and V (x)

remain constant and equal to the values attained at the crack center cross sections.  Thus far, the shear 
force resultants  dominating the top and bottom beams are the only remaining unknowns in 
determining the load transfer mechanics across the beam crack region.  These quantities are established 
below along with other problem variables using beam compatibility conditions. 
 
Beam compatibility conditions. Compatibility conditions are required in enforcing displacement and 
cross sectional  rotation conditions at the interfaces between two beams.  It is common to cast a beam 
problem using the second order differential equation of the elastic curve of the beam along with 
deflection and beam slope boundary and matching conditions.  In this study, for simplicity purposes we 
shall employ the method of linear superposition in addressing the deformation mechanics of the four-
beam model presented in Fig. 4.  More specifically, in this formulation each beam will be treated as a 
Timoshenko beam thus accounting in the general formulation for shear effects.  The deformation of 
each beam (deflections, cross sectional rotations and slope of neutral axis, will be accounted for by 
superimposing the local deformations of a cantilever beam subjected to end transverse force V and 
moment M shown in Fig. 6b, to the deformations caused by the deflection and rotation of the “fixed” 
attached to it’s adjacent deforming beam.  In doing so, the deflection δ , cross section rotation ϕ  and 
slope of the neutral axis ϑ  at the free end of a typical Timoshenko beam shown in Fig. 6b will be used.  
For a beam of constant cross section, homogeneous material properties and the loading shown in Fig. 
6b the above quantities are given by [37], 

 

δ = − VL
3

3EI
− VL
κAG

+ ML
2

2EI
        ---Deflection at Free End

ϕ = − VL
2

2EI
+ ML
EI

                      ---Rotation of Cross Section at Free End

ϑ = − VL
2

2EI
+ ML
EI

− V
κAG

         ---Beam Slope at Free End

  (8) 

 
Fig. 6  (a)  A free body diagram of the left half of the “top” beam or beam-2 showing the force and 
moment resultants acting at interface 1 and mid-section at the crack center.  The above schematic along 
with similar schematics shown in Fig. 5 were used in obtaining the equilibrium equations (7).  (b)  A 
Timoshenko cantilever beam subjected to end transverse force V and moment M loading.  The 

V
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deformed configuration is drawn to distinguish between the beam slope ϑ at the free end and the 
rotation of the cross section denoted by ϕ used in the compatibility equations. 
 
Where the Timoshenko constant κ [38] appears to influence the deflection δ and slope ϑ , but not the 
rotation of the cross section measured by ϕ .  For clarity purposes, it may be important to note that in 
an Euler-Bernoulli [39] beam, the deformed cross section remains perpendicular to the neutral axis and 
thus its rotation is equal to the slope of the beam.  However, due to shear effects, in a Timoshenko 
beam the normal to the deformed cross section may not align with the deformed neutral axis and thus 
ϕ  may not be equal to ϑ  as suggested by equations (8) above and shown schematically in Fig. 6b.  
With the above in mind, the compatibility at beam interfaces put forward below will be enforced on the 
cross sectional normal ϕ  and not on the beam slope ϑ  which may exhibit discontinuities at beam 
interfaces due to shear effects. 
 
Introduction of “Transition Regions”. Supported by 2D finite element studies [33], a key contribution 
of this study is the hypothesis that load transfer through interfaces 1 through 4 shown in Fig. 5b, takes 
place in a more convoluted manner within relatively confined transition zones at each of the four-beam 
interfaces as shown schematically in Figs 4, 7 and 8.  In fact, as will be discussed in this section, the 
load transfer mechanics through the transition zone are shown to result in additional rotations of the 
cross sections at the crack tip which in this study are captured through rotary and Timoshenko shear 
springs.   
 
For example and as shown in Fig. 7, the right edge of “Transition Region” 1 is subjected to force and 
moment resultants N

1
,V
1
,M

1
which can be calculated in terms of N

t
,V

t
,M

t
as discussed above.  

Meanwhile, the left edge of the transition zone at cross section A  located at a distance λa  from the left 
crack tip ought to be subjected to either the deformation or traction conditions obtained through the 
beam bending theory as shown in Fig. 7.  The force and moment resultants acting on the left edge of 
the transition zone can thus be calculated using the normal and shear stress profiles at section A  as 
follows (see Fig. 7), 
 

NA
t = w σ x

y=(h
2
−h1 )

h
2

∫ (y)dy = − MA
t

2I
h − h1( )wh1,

 

VA
t = w τ xy

y=(h
2
−h1 )

h
2

∫ (y)dy = −VAIt
2I

6 h
h1

− 4
⎛
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∫ (y)dy = I t
I
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    (9) 
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Fig. 7. Schematics showing the profiles of the 
bending moment and axial force transmitted 
through the mid-plane of the beam region above 
the crack plane.  The linear profiles on the top left 
are consistent with the beam theory for the 
“healthy” beam.  The heavy blue lines on the top 
right represent the profiles predicted by the model 
developed in this study (see equations (3) and 
(5)).  The two results do not match at interface 1 
leading to the conclusion that transient profiles 
are required for the smooth transition between the 
two profiles.  In this study it is postulated that the 
discrepancy between the two profiles leads to the 
development of “extra rotations” in the transition 
region accounted for through rotary springs 
employed in this study. 

Fig. 8.  :  Schematics showing the relative axial 
deformations and cross sectional rotations of 
reference points along the mid-planes of the “top” 
and “bottom” beams including their adjacent 
transition zones.  Points A

t
→1→ 2→ B

t
shown 

in (b) deformed to locations A
t
→ ′1

h
→ ′2

h
→ ′B

t
in 

the “healthy” beam whereas in the “cracked beam 
they deformed to locations A

t
→ ′1

cr
→ ′2

cr
→ ′B

cr
as 

shown in (a).  Similarly, points A
b
→ 3→ 4→ B

b

deformed to A
b
→ ′3

h
→ ′4

h
→ ′B

b
in the “healthy” 

and to A
b
→ ′3

cr
→ ′4

cr
→ ′B

b
in the “cracked” 

beams respectively.  The above schematics also 
highlights the accumulation of “extra” rotations 
ϕ

1/A
 and ϕ

3/A
in the left transition zones which are 

offset by “extra rotations ϕ
B/1

 and ϕ
B/4

in the right 
transition zones. 

 
When comparing the above results to those given by equations (3), (5) and (7) one realizes that 
appreciable gradients in the axial, shear and bending moment resultants must exist in the transition 
zone.  For example, the bending moment at A can be expressed in terms of the bending moment at the 
crack center location M

C
, the applied force P and the distance from the crack center (see Figs 7 and 8) 

such that, 
M

A
= M

C
− Pa(1+ λ)       (10) 

where as before M
C

 is the bending moment acting at the crack center location in the healthy beam, P  
is a downward transverse load as shown in Fig. 4, a  is half the crack length and λa  is the length of a 
transition zone as shown in Figs. 7 and 8.  With the aid of equations (5), (7) and (9) one can show that, 
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NA
t − N1 = MC

2
h

1− It + Ib
I

⎛
⎝⎜

⎞
⎠⎟ −

h1h2

2I
⎧
⎨
⎩

⎫
⎬
⎭
+ 6P a

h
(1+ λ) h1

h
h2

h
   and    MA

t −M1 = −Pa(1+ λ) It
I
+Vta  (11) 

In the case when the horizontal crack is located on the mid-plane of the “healthy beam”, i.e.,  
h
1
= h

2
= h / 2  it can be shown that V

t
=V

b
= P / 2 and thus the axial force and bending moment 

differences between the quantities at cross section A and Interface 1 are calculated through equations 
(11) to be, 

N
A

t
− N

1
=

3

2
P
a

h
(1+ λ)     and      M

A

t
−M

1
=
Pa

8
(3− λ)    (12) 

In the case of λ → 0 , the above equations suggest that both the force and moment resultants 
transferred through the mid-plane of the beams above and below the crack plane would exhibit 
inadmissible discontinuities in the absence of any external load changes.   In fact, in accordance with 
equations (12) under the λ = 0 , i.e., absence of any transition region, the force and moment 
discontinuities also shown schematically in Fig. 7, are predicted to be N

A

t
− N

1
= 3Pa / 2h  and 

M
A

t
−M

1
= 3Pa / 8 .  These findings form the foundation for the introduction of the transition zones 

shown in Figs 7-9.  
 

 
 
Fig. 9. The compatibility paths followed through the “top” and “bottom” beams in establishing angle of 
rotation and deflection compatibility conditions from reference section A to reference section B.  Also 
shown are Transition Regions 1-4. 
 
While the presence of the transition zones would allow the smooth transition of the force and moment 
resultants from the healthy beam response at section A to the cracked beam mechanics predicted in the 
crack region, their presence also has a profound effect on the deformation and fracture mechanics of 
the cracked beam.   
 
In order to better understand the effects of the transition zone on the overall beam deformation 
mechanics, let’s consider the axial force and bending moment profiles presented in Fig. 7.   The bottom 
half of the above figure shows a section of the beam in the crack region above the neutral axis of the 
healthy structure.  It includes the left half of the top beam above the crack, or Beam-2 as well as its 
adjacent transition region labeled as “Transition Region 1”.  The transition region is of length λawith 
a being the half crack length.  At Interface 1, the resultant forces and moment applied at the mid-plane 
of the top beam are N

1
,V

1
 and M

1
.  At the left edge of transition region 1, the resultant forces and 

moments N
A

t
,V

A

t
 and M

A

t  are obtained with the aid of equations (9).  Profiles of the axial force and 
bending moment predicted by equations (9)-(12) are sketched on the top half of Fig. 7.  The profiles 
shown in solid black lines are predicted using equations (9) for the healthy beam whereas the solid blue 
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line profiles are those obtained with the aid of equations (3) through (7) for the crack region.  As shown, 
at interface 1 the moment and axial force predicted at the left edge of Transition Region 1, i.e., as
λ → 0 , do not match those predicted by the crack beam model at interface 1.  As discussed earlier, the 
existence of the transition zone is required for the smooth force and moment transition between 
sections A and interface 1.   
 
It is reasonable to assume that both the force and moment transitional profiles would be of the general 
type shown by the transitional profiles in dash black lines in Fig. 7.  Under such conditions, reduction 
in both the force and moment resultants relative to the healthy beam, would result in lower axial strains 
along the mid-plane of the transition region and thus a comparatively lower extension of the transition 
region mid-plane relative to its healthy counterpart.  This would appear in the cracked beam as a 
change in the rotary compliance giving rise to an additional angle of rotation ϕ

1/A
at Interface 1 as 

shown schematically in Figs. 7 and 8.  A similar load transfer and deformation mechanism would exit 
in Transition Region 3 connecting section A to the left end of the bottom beam at interface 3.  However, 
the axial force in the bottom beam being the opposite of that dominating the top beam would result in 
an added rotation in the same sense as that for interface 1.  The actual amount of added rotations should 
depend on the extent and thickness of the transition zone and should be proportional to the cross 
sectional resultants N

1
,V

1
 and M

1
.  Since the axial force N

1
= N

t
 with N

t
 linearly depending on M

t
 

through equation (5) while M
1
 and M

t
 are linearly related through V

t
 and a  in equation (7), the 

following rotary and shear deformation equations are proposed for each transition region, 
 

ϕ
1/A

=
M

1
λa

κ
1

m
EI

t

   and    δ
1/A

=
V

1
λa

k
t
GA

t

 For Transition Region 1  (13a) 

 

ϕ
2/B

=
M

2
λa

κ
1

m
EI

t

   and    δ
2/B

=
V

2
λa

k
t
GA

t

 For Transition Region 2  (13b) 

 

ϕ
3/A

=
M

3
λa

κ
3

m
EI

b

   and    δ
1/A

=
V

3
λa

k
b
GA

b

 For Transition Region 3  (13c) 

 

ϕ
4/B

=
M

4
λa

κ
3

m
EI

b

   and    δ
2/B

=
V

4
λa

k
b
GA

b

 For Transition Region 4  (13d) 

 
where κ

1

m
 and κ

3

m are normalized rotary spring stiffness constants to be determined through 
compatibility conditions and k

t
 and k

b
 are Timoshenko shear constants for the top and bottom beams 

respectively.  In postulating the above relations, it was assumed that the rotary and shear spring 
constants for interfaces 1 and 2 are the same as well as those of interfaces 3 and 4.  It may be of 
importance to note that due to the anti-symmetry of the force and moment resultants jumps between 
sections A and Interface 1 at the left crack tip and Interface 2 and section B  at the right tip as shown in 
Fig. 8, the added rotations capture by the above equations and occurring in Transition zone 1 would be 
offset by the added rotations at Interface 2 induced by the load and deformation mechanics in transition 
zone 2.  In fact, this observation has been validated using 2D finite elements and will be used as one of 
the compatibility conditions needed to determine the rotary and shear spring constants. 
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The above observation is further clarified with the aid of Figs 8 and 9.  In the above figures, emphasis 
is placed on the axial deformation of two reference lines, i.e., the mid-plane line segment of the top 
beam passing through the reference points A

t
→1→ 2→ B

t
and its bottom beam counterpart passing 

through points A
b
→ 3→ 4→ B

b
.  The red solid symbols represent the deformed position of the 

respective points in the cracked beam if the reference line was to stay straight whereas the open white 
symbols represent the corresponding deformed location of the same reference points in the healthy 
beam.  In Fig. 8, all deformations are sketched relative to those at a reference cross section at A .  For a 
downward applied load P the “beam” above the crack is subjected to tension whereas the one below 
the crack is subjected to compression.  Consistent with the gradient force and moment profiles shown 
in Fig. 7 and discussed above, the line segment A

t
→1  in Transition Region 1, would stretch less than 

its healthy beam counterpart.  Thus the relative crack beam and healthy beam deformed states are 
different as denoted by the ′1

cr
 and ′1

h
positions with the latter being further to the right.  Since no 

overall tension is applied to the beam structure, the neutral axis of the healthy beam would remain 
inextensible.  When connecting the deformed reference points of the cracked beam and the healthy 
beam to their neutral axis counterpart a differential ϕ

1/A
 angle of rotation is obtained when comparing 

the cracked and healthy beam systems.  As discussed above, this rotation is postulated in this study to 
depend linearly on the cross sectional moment resultant M

1
, the transition region length λawhile 

inversely proportional to an effective bending stiffness EI
t
multiplied by a proportionality constant κ

1

m  
given by equation (13a).  Interestingly enough, a similar effect appears at interface 3 through the 
compression and reduction of length arguments for line segment  A

b
→ 3  in Transition Region 3.  In 

both instances, changes in the effective rotation of interfaces 1 and 3 relative to the rotation of the 
healthy beam are predicted.  At his stage, it is not apparent as to whether the predicted extra rotations 
ϕ
1/A

 and ϕ
3/A

 are related to each other and what that relationship is.  As such, ϕ
3/A

 is postulated to be 
proportional to the moment resultant M

3
at interface 3 and inversely proportional to the effective 

bending stiffness κ
3

m
EI

b
.   

 
While a differential rotation between the healthy and the crack beam is predicted at interfaces 1 and 3, 
it can be shown that the line segments 1→ 2  in the beam above the crack (top beam) and 3→ 4  in the 
beam below the crack (bottom beam) experience identical stretching or shrinkage in the cracked and 
healthy beams.  This can be proven by integrating the axial strain ε

x
(x, y) along the respective paths in 

the crack and healthy beams such that, 
 

ε
cr

x

x=x1

x=x2

∫ (x, y =
h − h

1

2
)dx = ε

h

x

x=x1

x=x2

∫ (x, y =
h − h

1

2
)dx    (14) 

 
In light of the above, the differential rotations between the crack and healthy beam associated with 
interfaces 1 and 3 remain as such at interfaces 2 and 4.  However, given the anti-symmetry of the force 
and moment resultant difference between the healthy and cracked beams relative to the crack center, 
differential rotations take place in Transition Regions 2 and 4 in the opposite sense of those occurring 
in regions 1 and 3 fully offsetting one another at reference point B as suggested by the 2D Finite 
Element results reported elsewhere [33] and in Fig. 2.  In this study, the transition crack lengths in all 
four transition regions are assumed to be equal while making the added rotations to be linearly 
dependent on the respective bending moment resultants as reflected by equations (13).  All rotary 
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spring stiffness proportionality constants, i.e., κ
1

m and κ
3

m along with the transition zone length 
parameter λ are to be determined through compatibility conditions which shall be implemented next.  
 
Compatibility of cross-sectional rotations. Cross sectional rotation and neutral axis deflection 
compatibility shall be enforced between sections A and B following two separated paths along the top 
( A→1→ 2→ B ) and bottom ( A→ 3→ 4→ B ) beams as shown in Fig. 9.  More specifically, for 
compatibility purposes, it is required that, 

ϕ
B
=ϕ

A
+ϕ

1/A
+ϕ

2/1
+ϕ

B/2
=ϕ

A
+ϕ

3/A
+ϕ

4/3
+ϕ

B/4
                (15) 

where ϕ
A

and ϕ
B

are the rotations of sections A and B respectively while ϕ
1/A

, ϕ
2/1

and ϕ
B/2

represent 
the relative rotations between sections 1  and  A , 2 and 1 and B and 2 respectively as shown 
schematically in Fig. 10.  

	  
	  
Fig.10.	   The	   deformed	   neutral	   axis	   of	   a	   “continuous”	   beam	   from	   reference	   cross	   section	   A	   to	  
reference	   cross	   section	   B	   highlighting	   the	   relations	   between	   cross	   sectional	   rotations	   and	  
deflections	  along	  the	  compatibility	  path	   A

t
→1→ 2→ B

t
shown	  in	  Figs	  8	  and	  9.	  

	  
The above equation is equivalent to stating that ϕ t

B/A
=ϕ b

B/A
, or the change of the cross sectional 

rotation from A and B calculated through the mechanics of Transition Region 1, Beam 2 and Transition 
Region 2 should be identical to that calculated through the mechanics of Transition Region 3, Beam-3 
and Transition Region 4.  Thus, after eliminating ϕ

A
appearing at both sides of equation (15) the above 

compatibility equation simplifies to, 
ϕ
1/A

+ϕ
2/1
+ϕ

B/2
=ϕ

3/A
+ϕ

4/3
+ϕ

B/4
    (16) 

As discussed earlier in this study, when a Timoshenko beam is used, the rotational compatibility 
condition is imposed on the rotation of the cross section and not the slope of the beam consistent with 
equations (8).  The individual terms appearing in equation (16) can be obtained using the postulated 
transition zone equations (13) and the Timoshenko beam equations (8) as follows, 
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ϕ
1/A

=
M

1
λa

κ
1

m
EI

t

ϕ
2/1

= −
V
2
(2a)

2

2EI
t

+
M

2
(2a)

EI
t

ϕ
B/2

=
M

2
λa

κ
1

m
EI

t

 

 
 
 
 
and 

ϕ
3/A

=
M

3
λa

κ
3

m
EI

b

ϕ
4/3

= −
V
4
(2a)

2

2EI
b

+
M

4
(2a)

EI
b

ϕ
B/4

=
M

4
λa

κ
3

m
EI

b                         (17)

 

 
In the above equations, the assumption was made that  κ

1

m
=κ

2

m
 and κ

3

m
=κ

4

m . When substituting 
equations (17) into (16) the following relationship is obtained, 
 

M
t
2a

EI
t

λ

κ
1

m
+1

⎛
⎝⎜

⎞
⎠⎟
=
M

b
2a

EI
b

λ

κ
3

m
+1

⎛
⎝⎜

⎞
⎠⎟

    (18) 

 
Now utilizing equation (2), i.e., M

t
/ I

t
= M

b
/ Ib = M

C
/ I , the above relation yields, 

 
κ
1

m
=κ

3

m      (19) 
 
Compatibility of deflections. Assisted by the deformation schematic shown in Fig. 10, the deflection at 
section B  of the cracked beam can be obtained using the principle of linear superposition as follows, 
 

δ B = δ A +ϕA(λ + 2)a +δ1/A +ϕ1/A(λ + 2)a +δ 2/1 +ϕ2/1λa +δ B/2

                                                using the A→1→ 2 → B path 
 

 
or              (20) 

 
δ B = δ A +ϕA(λ + 2)a +δ1/A +ϕ1/A(λ + 2)a +δ 2/1 +ϕ2/1λa +δ B/2    
                                                using the A→ 3→ 4 → B path 

 

The relative deflections δ
1/A, 

δ
3/A
δ
B/2

and δ
B/4

are related to the load transfer and deformation mechanics 
within the four transition regions.  As discussed earlier in this work, the axial force and bending 
moment transition region effects lead to a postulated change in the angle of rotation at interfaces 1 
through 4.  As such, the relative deflection due to shear in the same transition region should be related 
to the application of the total resultant shear force which in the system under study equals the applied 
load P .  Thus, the relative deflections at the mid-plane at interfaces 1 and 3 at the left tip and 2 and 4 
at the right crack tip ought to be equal and most likely given by the Timoshenko shear term.  In any 
case, since δ

1/A  
= δ

3/A
and δ

B/2
= δ

B/4
the deflection compatibility condition must take the form, 

δ
B/A

t
= δ

B/A

b       (21) 
which can be expressed as follows, 
 

ϕ
1/A
(λ + 2)a +δ

2/1
+ϕ

2/1
λa =ϕ

3/A
(λ + 2)a +δ

4/3
+ϕ

4/3
λa    (22) 
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Again using the Timoshenko formulas given in (8) the individual terms appearing in equations (22) are 
given in terms of the cross sectional resultants and beam geometry and structural stiffnesses as follows, 
 

ϕ
1/A

=
M

1
λa

κ
1

m
EI

t

δ
2/1

= −
V
2
(2a)

3

3EI
t

+
M

2
(2a)

2

2EI
t

−
V
1
2a

k
t
GA

t

ϕ
2/1

= −
V
2
(2a)

2

2EI
t

+
M

2
(2a)

EI
t

 

 
 
 
 
and 

ϕ
3/A

=
M

3
λa

κ
3

m
EI

b

δ
2/1

= −
V
4
(2a)

3

3EI
b

+
M

4
(2a)

2

2EI
b

−
V
4
2a

k
b
GA

b

ϕ
2/1

= −
V
4
(2a)

2

2EI
b

+
M

4
(2a)

EI
b  

(23) 
where k

t
 and k

b
 are the Timoshenko constants for Beam-2 and Beam-3 respectively.  By substituting 

the rotations and deflections given by equations (23) into their respective equivalents in (22) and by 
making use the moment relations given in equations (7) we arrive at the following deflection 
compatibility equation, 

M
t
a
2

EI
t

1

κ
1

m
λ(2 + λ)+ 2(1+ λ)

⎡

⎣
⎢

⎤

⎦
⎥ −

V
t
a
3

EI
t

1

κ
1

m
λ(2 + λ)+

2

3

⎡

⎣
⎢

⎤

⎦
⎥ −

V
t
2a

k
t
GA

t

=

=
M

b
a
2

EI
b

1

κ
3

m
λ(2 + λ)+ 2(1+ λ)

⎡

⎣
⎢

⎤

⎦
⎥ −

V
b
a
3

EI
b

1

κ
3

m
λ(2 + λ)+

2

3

⎡

⎣
⎢

⎤

⎦
⎥ −

V
b
2a

k
b
GA

b

  (24) 

It has already been established that κ
1

m
=κ

3

m  (see equation (19)), and given the fact that 
M

t
/ I

t
= M

b
/ Ib = M

C
/ I , the above equation further simplifies to the following shear force ratio 

equation. 

V
t

V
b

=
I
t

I
b

1

κ
1

m
λ(2 + λ)+ 2(1+ λ)+

2

k
b

I
b

A
b
a
2

E

G

1

κ
1

m
λ(2 + λ)+ 2(1+ λ)+

2

k
t

I
t

A
t
a
2

E

G

   (25) 

It is obvious that in order to establish the above shear force ratio, κ
1

m
 and λ  need to be determined 

through additional conditions as will be discussed below.  However, it is worth noting that when 
ignoring the Timoshenko shear effects, i.e., letting k

t
 and k

b
→∞  then the following simple form for 

the shear force ratio is obtained, 
V
t

V
b

=
I
t

I
b

       (26) 

It is also noteworthy to observe for systems in which the crack is on the beam neutral axis (I.e., h
1
= h

2
), 

both equations (25) and (26) predict that the shear force ration between the shear resultants in the top 
and bottom beam is V

t
V
b
=1  and thus from global equilibrium enforced by equation (6) it can be 

shown that V
t
=V

b
= P / 2.   As will be discussed later, shear force predictions obtained by the present 

model were found to compare very well with 2D finite element results. 
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Calculating the normalized rotary spring stiffness.  Of the two remaining unknowns, i.e., κ
1

m
 and λ , 

the normalized rotary spring stiffness κ
1

m can be estimated using the second key observation from 2D 
finite elements (see Fig. 2), i.e., the neutral axis rotation (slope) of the cracked beam in the region 
between the applied load and the nearest crack tip matches the corresponding slope of the healthy 
beam.  The above observation leads to the following condition, 

ϕ cr

B/A
=ϕ h

B/A
      (27) 

where the superscripts )
cr

 and )
h  denote quantities for the cracked and healthy beams respectively.  The 

left hand side of the above equation is equal to the left hand side of equation (18).  Thus, the above 
relation can be written in terms of the moment and shear force resultants as follows, 

ϕ cr

B/A
=
M

t
2a

EI
t

λ

κ
1

m
+1

⎛
⎝⎜

⎞
⎠⎟
=ϕ h

B/A
= −

V
B
(2a(1+ λ))2

2EI
+
M

B
2a(1+ λ)

EI
  (28) 

where V
B
= P  and M

B
= M

C
+ P(1+ λ)a .  In light of the above, equation (28) above takes the form, 

M
t
2a

EI
t

λ

κ
1

m
+1

⎛
⎝⎜

⎞
⎠⎟
=
M

C
2a

EI
t

λ +1( )     (29) 

Again utilizing equation (2), i.e., M
t
/ I

t
= M

b
/ Ib = M

C
/ I , the above equation reduces to 

M
C

2a

EI
t

λ

κ
1

m
− λ

⎛
⎝⎜

⎞
⎠⎟
= 0    which leads to   κ

1

m
=1    (30) 

The above finding along with equation (19) suggest that κ
1

m
=κ

3

m
=1  and thus the rotary spring 

stiffnesses are as follows, 
κ1 = M1 /ϕ1/A  = EIt / λa,    κ 2 = M 2 /ϕB/2 = EIt / λa
κ 3 = M 3 /ϕ3/A = EIb / λa,   κ 4 = M 4 /ϕB/4 = EIb / λa      (31) 

where λa  is the extent of the transition zones to be determined next. 
 
On the transition zone.  The above findings reflected through equations (31), highlight the importance 
of the transition regions in understanding the load transfer and deformation mechanics in a beam with a 
horizontal sharp crack.  The postulated rotations at interfaces 1 through 4 at the left and right crack tips 
are found to depend on the extent or length of the transition region λa .  Thus, the full development of 
the four-beam model proposed in this study requires the determination of the transition region length 
λa .  As will be presented later on in this section, in this study we make use of an independent beam 
deflection estimate at the free end obtained numerically via the method of finite elements.  Thus by 
matching the beam deflection estimated through the beam model to that obtained through finite 
elements, a non-linear equation in λ is obtained through which estimates for the normalized transition 
zone length are derived.  However, before developing the consistency equation in λ , it may be of value 
to this and subsequent studies to consider the load transfer and deformation mechanics in the transition 
zone regions.   For example, let us consider the mechanics of Transition Region 1, shown in Fig. 11.  
As shown in the above figure, on the left edge of the above transition region, the force and moment 
resultants would be those obtained from the bending theory consistent with equations (9) as discussed 
earlier.  On the right edge, different moment and force resultants are applied consistent with the 
mechanics of the cracked beam presented earlier in this study.  As discussed earlier, the rotary beam 



Mechanics, Materials Science & Engineering, Submitted, June 2016 – ISSN 2412-5954 
	  

	   16	  

changes relative to the healthy 

 
	  
Figure 11:  Schematics of potential transition region stress fields that are superimposed onto those of 
the healthy beam.  These fields are shown to conform to the near-tip mixed mode fields near the crack 
tip region and to the macro-mechanical field differences sufficiently away from the crack tip.  As 
shown, a change of moment ΔM is induced by the mode I component of the stress intensity factor on 
the crack plane ahead of the left crack tip.  An equal and opposite moment change then must occur on 
the left vertical plane of the transition region thus causing a slight “bump” on the moment and 
associated curvature profile at the start of the transition region as shown in Fig. 3.  
 
can be attributed to the load transfer through the transition region in which the resultants obtained on 
the left edge must transition to the resultants estimated for the right edge.  At this point one has to also 
account for the singular stress field dominating the crack tip region.  For example, based on the crack 
tip region reference system ′x , ′y  shown in Fig. 11, the normal stress σ

x
(y)  acting on the vertical 

interface 1 in the crack tip region can be obtained by evaluating the respective crack tip stress at 
′θ = −90

o , i.e., 
 

σ x (y) =σ ′x ( ′r , ′θ = −π / 2)

         = KI

2πr
cos( ′θ

2
) 1− sin( ′θ

2
)sin(3 ′θ

2
)⎛

⎝⎜
⎞
⎠⎟ ′θ =−π /2

         + KII

2πr
(−sin( ′θ

2
) 2 + cos( ′θ

2
)cos(3 ′θ

2
)⎛

⎝⎜
⎞
⎠⎟ ′θ =−π /2

          = 1
4 π

KI + 3KII( )y−1/2

  (32) 

The above singular stress profile is shown in Fig. 11 with a heavy solid line in the proximity of the 
crack tip continuing with a light dash line away from the singular region.  Meanwhile, sufficiently 
away from the crack tip region, the same stress component must follow the linear mechanics of 
material profile predicted by the system macro mechanics.  As shown in Fig. 11, a stress transition 
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zone must also exist  as needed for the smooth transition of the σ
x
(y)  component between the two 

fields.  It is reasonable to expect that such a stress profile that accounts for both the finite macro 
mechanics profile as well as the singular near-tip profile would cause a shift of the plane on which the 
force resultant is effectively acting.  A similar argument can be made for the shear stress acting on the 
same vertical plane (i.e., interface 1) as well as for the normal σ

x
(y)  and shear τ xy

(x) profiles acting on 
the horizontal transition zone edge ahead of the crack tip.  Such observations would naturally lead to 
the conclusion that a rather convoluted stress field dominates the transition region and that it’s structure 
and intensity should also depend on the stress intensity factors K

I
 and K

II
associated with the related 

crack tip.  It is with this in mind that it is expected that the extent of the transition region λa  should 
include information related to the crack-tip domain and thus could depend on the structure of the mixed 
mode [41-45] singular fields and possibly the magnitude of the related stress intensity factor.   
 
Another relevant observation is that the presence of even a slight mode I component would induce a 
tensile normal stress if K

I
> 0 associated with crack tip opening, or compressive if K

I
< 0 associated 

with crack surface contact as shown schematically in Fig. 11.  The presence of such a stress close to the 
crack tip will need to be offset by an opposite stress resultant away from the crack tip in the transition 
region.  Such a stress profile would then induced a net moment ΔM on the plane ahead of the crack tip 
in the transition zone which ought to be counter-balanced by an equal and opposite moment on the 
vertical left edge of the transition zone.  Such a moment change could explain the free surface 
curvature “bump” observed via finite elements as shown in Fig. 3.  Thus, the presence of such a 
curvature “bump” could indicate the existence of crack damage in the vicinity of such a measurement 
used in non-model damage detection methods [47-50].   
 
Given the above qualitative considerations regarding the mechanics of the transition region, several 
methods can be employed in calculating the relationship between λ and the various problem variables 
that may affect the local stress intensities.  One such method is to evaluate the crack-tip stress 
intensities and or associated energy release rate using either a compliance method [28-31, 40] or a J −
integral approach [41] based on the model findings of this study.  Those estimates can then be 
compared to independent estimates obtained for example using the method of finite elements which 
will then yield a consistency equation in λ .  Yet, another possible approach is to extract the transition 
zone domain and conduct rigorous numerical and possibly theoretical studies in solving the requisite 
boundary value problem thus required to establish the load transfer and deformation mechanics of the 
transition zone.  Such an approach would allow for parametric studies needed to establish the relative 
deformation of the right edge of the transition zone relative to the left.   Such estimates would be used 
in determining the differential deformation between the cracked and healthy structures thus giving 
estimates of the rotary changes induced by the introduction of the crack and thus obtained estimates of 
the rotary spring stiffnesses which can the be used to obtain the transition length constant λ  through 
equations (31).  Such studies are currently being pursuit which are expected to be presented in in future 
works.   In this work however, we employ a beam deflection matching alternative in determining the 
transition length constant λ  as discussed below. 
 
 Beam deflection matching. The global mechanics of a beam with a crack includes the effects of the 
crack tip regions.  Thus, the beam deformations anywhere in its domain including the deflection at its 
free end include the effects of the dominant stress intensity factors at both crack tips.  Thus, one can 
use a known solution obtained by any other method including experimental techniques and numerical 
approaches such as the method  of finite elements, to calibrate the beam-model developed in this study 
as an effective way to calculating the transition length constant λ . 
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Fig.	  12.	   	  A	  schematics	  showing	  (a)	  the	  original	  cracked	  beam	  with	  its	  un-‐deformed	  neutral	  axis	  
and	   (b)	   the	   deformed	   neutral	   axis	   configuration	   of	   the	   four	   beam	   model.	   	   The	   relationship	  
between	  the	  deflections	  and	  rotations	  at	  key	  reference	  points	  of	  the	  beam	  are	  also	  shown	  in	  (b).	  	  
The	  deformations	  and	  rotations	  between	  A	  and	  B	  include	  the	  transition	  zone	  affects	  captured	  by	  
the	  rotary	  spring	  and	  Timoshenko	  shear	  effects.	  
 
With the aid of Fig. 12, the deflection of the beam at it’s free end at D  is given by, 
 

δ
D
= δ

A
+ϕ

A
(L − l

1
)+δ

B/A
+ϕ

B/A
l
3
+δ

D/B
     (33) 

 
where δ

B/A
and ϕ

A
are the deflection and angle of rotation at the cross section A  at the start of the 

transition zone at the left crack tip, δ
B/A

and ϕ
B/A

are the deflection and angle of rotation respectively of 
section B  at the end of the transition zone at the right crack tip relative to A , and δ

D/B
is the deflection 

of the free end at D relative to B .  It is important to note that in this analysis, the effects of the 
transition zones are include in the relative terms δ

B/A
and ϕ

B/A
and thus do not appear directly in 

equation (33) above.  Using the Timoshenko formulas for the deflection and rotations of a cantilever 
beam given in (8) along with the outcomes on the relative deformations of section B relative to A used 
earlier in this study the individual terms appearing in equation (33) take the form, 

 

δ A = − Pl1
3

3EI
− P(L − l1)l1

2

2EI
− Pl1
kAG

,    ϕA = − Pl1
2

2EI
− P(L − l1)l1

EI
   (34a) 
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δ B/A =
Mta

2

EIt
1
κ1

m λ(2 + λ)+ 2(1+ λ)
⎡

⎣
⎢

⎤

⎦
⎥ −

Vta
3

EIt
1
κ1

m λ(2 + λ)+
2
3

⎡

⎣
⎢

⎤

⎦
⎥ −

Vt 2a
ktGAt

− P2λa
kGA

ϕB/A =
Mt 2a
EIt

λ
κ1

m +1
⎛
⎝⎜

⎞
⎠⎟

δD/B = − Pl3
33

3EI
− Pl3
kAG

  (34b) 

 
where l

1
= L − (x

C
− a(1+ λ)) , l

2
= 2a(1+ λ)  and l

3
= L − (x

C
+ a(1+ λ)) , M

t
I
t
= M

C
I  and 

M
C
= −P(L − x

C
) .   Also in the above formulas, κ

1

m
=1consistent with equation (30) while V

t
 can be 

expressed in terms of the load P and the shear force ratio V
t
V
b

given by equation (25).  Furthermore, 
in equations (34), the constants k  and k

t
are the Timoshenko shear constants for the healthy beam and 

beam-2 above the crack respectively.  Thus using the above equations and after normalizing each term 
with respect to a characteristic deflection Δ = PL

3
′E I , the following consistency condition in which 

the only unknown is the transition zone length constant λ is obtained, 
 

δ
D
= −

PL
3

′E I
δ̂
A
+ ϕ̂

A
(1− l̂

1
)+ δ̂

B/A
+ ϕ̂

B/A
l̂
3
+ δ̂

D/B{ } = −
PL

3

EI

1

12

h

L

⎛
⎝⎜

⎞
⎠⎟
3

δ̂ FE

D

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (35) 

 
Where the  ̂ symbol denotes normalized quantities with all length quantities normalized with respect to 
the beam length L  and ′E = E / (1−ν

2
)  is used to convert the beam plane stress to its plane strain 

equivalent solution.  Also in the above consistency equation, ˆδ
D

FE is the absolute value of the deflection 
of the cracked beam at it’s free end obtained through non-dimensional FE simulations as will be 
discussed later in the study.  In light of the above normalization, the following expanded form of the 
consistency equation in λ is obtained, 
 

δ
D

MM
= −

(1−ν 2
)PL

3

EI

1

3
l̂
1

3⎧
⎨
⎩

+
1

2
(1− l̂

1
)l̂
1

2
+
(l̂
1
+ l̂

3
)(1+ν )

6k

h

L

⎛
⎝⎜

⎞
⎠⎟
2

+
1

2
l̂
1

2
+ (1− l̂

1
)l̂
1

⎛
⎝⎜

⎞
⎠⎟
(1− l̂

1
)

+(1− x̂
C
)â

2
(2 + 4λ + λ

2
)+

V
t

P

I

I
t

â
3 2

3
+ λ(2 + λ)

⎛
⎝⎜

⎞
⎠⎟
+
V
t

P

â(1+ν )

3k
t

h

L

⎛
⎝⎜

⎞
⎠⎟
2
h

h
1

+
λâ(1+ν )

6k

h

L

⎛
⎝⎜

⎞
⎠⎟
2

+ (1− x̂
C
)2â(1+ λ)l̂

3
+
1

3
l̂
3

3
= −

PL
3

EI

1

12

h

L

⎛
⎝⎜

⎞
⎠⎟
3

δ̂
FE

D

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (36) 

 
As established earlier (see equation (25),  the shear force ratio can be expressed as follows, 
 

V
t

V
b

=
I
t

I
b

γ (λ)      (37) 

where  
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γ (λ) =

2 + 4λ + λ 2
+
(1+ν )

3k
b

h
2

a

⎛
⎝⎜

⎞
⎠⎟
2

2 + 4λ + λ 2
+
(1+ν )

3k
t

h
1

a

⎛
⎝⎜

⎞
⎠⎟
2

    (38) 

 
Clearly, when h

1
= h

2
, and the Timoshenko constants k

t
= k

b
the factor γ =1and thusV

t
V
b
=1 which 

yields V
t
P =1/ 2 .  It is also worth noting that when ignoring the Timoshenko shear effects, i.e., 

k
t
,k

b
→∞ , then γ =1and the ratio V

t
V
b

and thus V
t
P  become independent of λ .  Regardless, the 

consistency equation given by (36) takes on the following form in λ , 
 

α (λ)λ 2
+ β(λ)λ +η(λ) = 0      (39) 

 
where the equation coefficients are functions of λ either explicitly as shown below or implicitly 
through the beam lengths l̂

1
(λ),  l̂

2
(λ),  l̂

2
(λ) and are given by, 

 

α (λ) = (1− x̂
C
)â

2
+

γ I

I
b
+ γ I

t

â
3  

 

β(λ) = 4(1− x̂
C
)â

2
+ 2

γ I

I
b
+ γ I

t

â
3
+ 2(1− x̂

C
)âl̂

3
+
â(1+ν )

6k

h

L

⎛
⎝⎜

⎞
⎠⎟
2

 

 

η(λ) =
1

3
(l̂

1

3
+ l̂

3

3
)+ (1− l̂

1
)l̂

1

2
+ l̂

1
(1− l̂

1
)

2
+ 2â(1− x̂

C
)(â + l̂

3
)

    +
V
t

P

2

3

I

I
t

â
3
+

(1+ν )â

3k
t

h

L

⎛
⎝⎜

⎞
⎠⎟

2
h

h
1

⎡

⎣
⎢

⎤

⎦
⎥ +

(1+ν )(l̂
1
+ l̂

3
)

6k

h

L

⎛
⎝⎜

⎞
⎠⎟

2

    −
1

12(1−ν 2
)

h

L

⎛
⎝⎜

⎞
⎠⎟

3

δ̂
D

FE

    (40) 

 
In the above equation, the finite element term is divided by the (1−ν 2

) factor as needed to match the 
beam plane stress and the 2D FE plain strain solutions. The above consistency equation in λ will be 
solved for several cases wherein the horizontal crack is placed at different locations along the length 
and height of the beam.  However, in order to carry out this task, finite element solutions for the non-
dimensional deflection of the beam at the free end will need to be obtained.  Thus, a brief description of 
the finite element models used in these simulations shall be discussed next. 
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Conclusion. 
This study represents the first part of a two part study aimed at modeling the mechanical response of a 
cantilever beam containing an embedded horizontal crack and subjected to en end force condition.  
Informed by 2D finite element findings reported elsewhere [33] and summarized in this work, a four-
beam mechanics of materials model has been developed capable of predicting the load transfer and 
deformation mechanics of a cracked cantilever beam discussed above.  The model employs transition 
zones associated with four rotary springs as a means of accounting for the load transfer through the 
regions adjacent to the crack tips.  The rotary springs account for relative cross sectional rotations in 
the transition zone induced by changes in the axial force and bending moments through the crack 
region.      
 
Initially, the load transfer through the crack region was addressed.  Finite element observations 
reported elsewhere [33] of matching curvatures enabled the development of analytical models capable 
of predicting the bending moment and axial force transmitted through the beams above and below the 
crack.  The above quantities were then incorporated into the four-beam model which was used to obtain 
estimates of the transition zone length as well as estimates of the shear force distribution in the beams 
above and below the crack.  Deflection and cross-sectional rotation compatibility conditions were used 
in establishing the effective rotary spring stiffnesses which capture the effects of the transition zone.  
The transition zone length is obtained via non-linear equation derived by matching the free end 
deflection of the cracked beam predicted by the current model to independent estimates obtained via 
the method of finite elements.  The finite element model formulation along with the results obtained 
through broad parametric studies and related discussion is presented in a Part-B companion paper. 
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